skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ershov, A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Low-density meter-scale plasma waveguides produced in meter-scale supersonic gas jets have paved the way for recent demonstrations of all-optical multi-gigaelectronvolt laser wakefield acceleration (LWFA). This paper reviews recent advances by the University of Maryland, which have enabled these results, focusing on the development of elongated supersonic gas jets up to ∼1 m in length, experimental and simulation studies of plasma waveguide formation, and a new three-stage model for relativistic pulse propagation dynamics in these waveguides. We also present results from recent LWFA experiments conducted at the Laboratory for Advanced Lasers and Extreme Photonics at Colorado State University demonstrating high charge, low divergence electron bunches to ∼10 GeV, with laser-to-electron beam efficiency of at least ∼30%. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  2. This paper explores list decoding of convolutional and polar codes for short messages such as those found in the 5G physical broadcast channel. A cyclic redundancy check (CRC) is used to select a codeword from a list of likely codewords. One example in the 5G standard encodes a 32-bit message with a 24-bit CRC and a 512-bit polar code with additional bits added by repetition to achieve a very low rate of 32/864. This paper shows that optimizing the CRC length improves the Eb/N0 performance of this polar code, where Eb/N0 is the ratio of the energy per data bit to the noise power spectral density. Furthermore, even better Eb/N0 performance is achieved by replacing the polar code with a tail-biting convolutional code (TBCC) with a distance-spectrum-optimal (DSO) CRC. This paper identifies the optimal CRC length to minimize the frame error rate (FER) of a rate-1/5 TBCC at a specific value of Eb/N0. We also show that this optimized TBCC/CRC can attain the same excellent Eb/N0 performance with the very low rate of 32/864 of the 5G polar code, where the low rate is achieved through repetition. We show that the proposed TBCC/CRC concatenated code outperforms the PBCH polar code described in the 5G standard both in terms of FER and decoding run time. We also explore the tradeoff between undetected error rate and erasure rate as the CRC size varies. 
    more » « less
  3. null (Ed.)
    There has been an explosion of ideas in soft robotics over the past decade, resulting in unprecedented opportunities for end effector design. Soft robot hands offer benefits of low-cost, compliance, and customized design, with the promise of dexterity and robustness. The space of opportunities is vast and exciting. However, new tools are needed to understand the capabilities of such manipulators and to facilitate manipulation planning with soft manipulators that exhibit free-form deformations. To address this challenge, we introduce a sampling based approach to discover and model continuous families of manipulations for soft robot hands. We give an overview of the soft foam robots in production in our lab and describe novel algorithms developed to characterize manipulation families for such robots. Our approach consists of sampling a space of manipulation actions, constructing Gaussian Mixture Model representations covering successful regions, and refining the results to create continuous successful regions representing the manipulation family. The space of manipulation actions is very high dimensional; we consider models with and without dimensionality reduction and provide a rigorous approach to compare models across different dimensions by comparing coverage of an unbiased test dataset in the full dimensional parameter space. Results show that some dimensionality reduction is typically useful in populating the models, but without our technique, the amount of dimensionality reduction to use is difficult to predict ahead of time and can depend on the hand and task. The models we produce can be used to plan and carry out successful, robust manipulation actions and to compare competing robot hand designs. 
    more » « less
  4. Abstract Despite the f0(980) hadron having been discovered half a century ago, the question about its quark content has not been settled: it might be an ordinary quark-antiquark ($${{\rm{q}}}\overline{{{\rm{q}}}}$$ q q ¯ ) meson, a tetraquark ($${{\rm{q}}}\overline{{{\rm{q}}}}{{\rm{q}}}\overline{{{\rm{q}}}}$$ q q ¯ q q ¯ ) exotic state, a kaon-antikaon ($${{\rm{K}}}\overline{{{\rm{K}}}}$$ K K ¯ ) molecule, or a quark-antiquark-gluon ($${{\rm{q}}}\overline{{{\rm{q}}}}{{\rm{g}}}$$ q q ¯ g ) hybrid. This paper reports strong evidence that the f0(980) state is an ordinary$${{\rm{q}}}\overline{{{\rm{q}}}}$$ q q ¯ meson, inferred from the scaling of elliptic anisotropies (v2) with the number of constituent quarks (nq), as empirically established using conventional hadrons in relativistic heavy ion collisions. The f0(980) state is reconstructed via its dominant decay channel f0(980) →π+π, in proton-lead collisions recorded by the CMS experiment at the LHC, and itsv2is measured as a function of transverse momentum (pT). It is found that thenq= 2 ($${{\rm{q}}}\overline{{{\rm{q}}}}$$ q q ¯ state) hypothesis is favored overnq= 4 ($${{\rm{q}}}\overline{{{\rm{q}}}}{{\rm{q}}}\overline{{{\rm{q}}}}$$ q q ¯ q q ¯ or$${{\rm{K}}}\overline{{{\rm{K}}}}$$ K K ¯ states) by 7.7, 6.3, or 3.1 standard deviations in thepT< 10, 8, or 6 GeV/cranges, respectively, and overnq= 3 ($${{\rm{q}}}\overline{{{\rm{q}}}}{{\rm{g}}}$$ q q ¯ g hybrid state) by 3.5 standard deviations in thepT< 8 GeV/crange. This result represents the first determination of the quark content of the f0(980) state, made possible by using a novel approach, and paves the way for similar studies of other exotic hadron candidates. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026
  5. Free, publicly-accessible full text available September 1, 2026
  6. Free, publicly-accessible full text available September 1, 2026
  7. Free, publicly-accessible full text available September 1, 2026
  8. Abstract We review comprehensive observations of electromagnetic ion cyclotron (EMIC) wave-driven energetic electron precipitation using data collected by the energetic electron detector on the Electron Losses and Fields InvestigatioN (ELFIN) mission, two polar-orbiting low-altitude spinning CubeSats, measuring 50-5000 keV electrons with good pitch-angle and energy resolution. EMIC wave-driven precipitation exhibits a distinct signature in energy-spectrograms of the precipitating-to-trapped flux ratio: peaks at >0.5 MeV which are abrupt (bursty) (lasting ∼17 s, or$$\Delta L\sim 0.56$$ Δ L 0.56 ) with significant substructure (occasionally down to sub-second timescale). We attribute the bursty nature of the precipitation to the spatial extent and structuredness of the wave field at the equator. Multiple ELFIN passes over the same MLT sector allow us to study the spatial and temporal evolution of the EMIC wave - electron interaction region. Case studies employing conjugate ground-based or equatorial observations of the EMIC waves reveal that the energy of moderate and strong precipitation at ELFIN approximately agrees with theoretical expectations for cyclotron resonant interactions in a cold plasma. Using multiple years of ELFIN data uniformly distributed in local time, we assemble a statistical database of ∼50 events of strong EMIC wave-driven precipitation. Most reside at$$L\sim 5-7$$ L 5 7 at dusk, while a smaller subset exists at$$L\sim 8-12$$ L 8 12 at post-midnight. The energies of the peak-precipitation ratio and of the half-peak precipitation ratio (our proxy for the minimum resonance energy) exhibit an$$L$$ L -shell dependence in good agreement with theoretical estimates based on prior statistical observations of EMIC wave power spectra. The precipitation ratio’s spectral shape for the most intense events has an exponential falloff away from the peak (i.e., on either side of$$\sim 1.45$$ 1.45 MeV). It too agrees well with quasi-linear diffusion theory based on prior statistics of wave spectra. It should be noted though that this diffusive treatment likely includes effects from nonlinear resonant interactions (especially at high energies) and nonresonant effects from sharp wave packet edges (at low energies). Sub-MeV electron precipitation observed concurrently with strong EMIC wave-driven >1 MeV precipitation has a spectral shape that is consistent with efficient pitch-angle scattering down to ∼ 200-300 keV by much less intense higher frequency EMIC waves at dusk (where such waves are most frequent). At ∼100 keV, whistler-mode chorus may be implicated in concurrent precipitation. These results confirm the critical role of EMIC waves in driving relativistic electron losses. Nonlinear effects may abound and require further investigation. 
    more » « less
  9. A<sc>bstract</sc> Inclusive and differential cross sections for Higgs boson production in proton-proton collisions at a centre-of-mass energy of 13.6 TeV are measured using data collected with the CMS detector at the LHC in 2022, corresponding to an integrated luminosity of 34.7 fb−1. Events with the diphoton final state are selected, and the measured inclusive fiducial cross section is$${\sigma }_{\text{fid}}={74}\pm {11}{\left({\text{stat}}\right)}_{-4}^{+5}\left({\text{syst}}\right)$$fb, in agreement with the standard model prediction of 67.8 ± 3.8 fb. Differential cross sections are measured as functions of several observables: the Higgs boson transverse momentum and rapidity, the number of associated jets, and the transverse momentum of the leading jet in the event. Within the uncertainties, the differential cross sections agree with the standard model predictions. 
    more » « less
    Free, publicly-accessible full text available September 1, 2026
  10. Incoherent J / ψ photoproduction in heavy ion ultraperipheral collisions (UPCs) provides a sensitive probe of localized, fluctuating gluonic structures within heavy nuclei. This Letter reports the first measurement of the photon-nucleon center-of-mass energy ( W γ N ) dependence of this process in PbPb UPCs at a nucleon-nucleon center-of-mass energy of 5.02 TeV, using 1.52 nb 1 of data recorded by the CMS experiment. The measurement covers a wide W γ N range of 40 400 GeV , probing gluons carrying a fraction x of nucleon momentum down to an unexplored regime of 6.5 × 10 5 . Compared to baseline predictions neglecting nuclear effects, the measured cross sections exhibit significantly greater suppression at lower x . Additionally, the ratio of incoherent to coherent photoproduction is found to be constant across the probed W γ N and x range, disfavoring the establishment of the black disk limit. This Letter provides critical insights into the x -dependent evolution of fluctuating gluonic structures within nuclei and calls for further advancements in theoretical models incorporating nuclear shadowing and gluon saturation. 
    more » « less
    Free, publicly-accessible full text available September 1, 2026